
1

Leveraging Data Provenance to Enhance
Cyber Resilience

Thomas Moyer∗, Karishma Chadha∗, Robert Cunningham∗, Nabil Schear∗,
Warren Smith∗, Adam Bates†, Kevin Butler‡, Frank Capobianco§, Trent Jaeger§, and Patrick Cable¶

∗MIT Lincoln Laboratory, Email: {tmoyer,karishma.chadha,rkc,nabil,warren.smith}@ll.mit.edu
†University of Illinois Urbana-Champaign, Email: adammbates@ufl.edu

‡University of Florida, Email: butler@cise.ufl.edu
§The Pennsylvania State University, Email: fcapobianco01@gmail.com, tjaeger@cse.psu.edu

¶Threat Stack, Inc., Email: pat@threatstack.com

Abstract—Building secure systems used to mean ensuring
a secure perimeter, but that is no longer the case. Today’s
systems are ill-equipped to deal with attackers that are able
to pierce perimeter defenses. Data provenance is a critical
technology in building resilient systems that will allow systems to
recover from attackers that manage to overcome the “hard-shell”
defenses. In this paper, we provide background information on
data provenance, details on provenance collection, analysis, and
storage techniques and challenges. Data provenance is situated to
address the challenging problem of allowing a system to “fight-
through” an attack, and we help to identify necessary work to
ensure that future systems are resilient.

I. INTRODUCTION

Creating bigger and better walls to keep adversaries out of
our systems has been a failing strategy. The recent attacks
against Target [13] and Sony Pictures [15], to name a few,
further emphasize this. It is untenable to assume that a system,
even with designed-in security, can successfully repel all
attacks. The next generation of secure systems must also be
able to withstand successful attacks using cyber resilience.
Cyber resilience broadly encompasses many areas including
traditional fault tolerance, moving target techniques, and data
provenance. In this paper we focus on the challenges and
approaches to creating resilient systems using data provenance.

Data provenance is the history of ownership/processing
or modification that we can use to guide its authenticity.
Provenance is typically represented as a directed acyclic graph
of nodes and edges that define the relationships between data,
the processes that act upon them, and the users and others
systems who controlled those processes. At face value, this
sounds simple, even mundane. But it turns out that this kind

DISTRIBUTION STATEMENT A. Approved for public release: distribu-
tion unlimited.

This material is based upon work supported by the Assistant Secretary of
Defense for Research and Engineering under Air Force Contract No. FA8721-
05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the Assistant Secretary of Defense for
Research and Engineering.

Delivered to the U.S. Government with Unlimited Rights, as defined
in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any
copyright notice, U.S. Government rights in this work are defined by DFARS
252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work
other than as specifically authorized by the U.S. Government may violate any
copyrights that exist in this work.

of information is critical to answering questions that we have
about our systems that are typically very difficult to answer.
For example: Where are all my data? Where did they come
from? Should I trust the data? How can I recover if something
has gone wrong? These questions are only becoming more
difficult to answer as the scale and complexity of our systems
grows. It is critical that we know what a system has already
done with its data, if we have any hope of fixing it after a
successful attack.

Though provenance has hundreds of years of use in the art
world and several decades of study in the literature surround-
ing data management [60], [20], it has only very recently been
applied to improving system security and resilience [7]. Using
provenance for securing systems presents a number of new
challenges including efficiently collecting the data, securely
encoding and storing it, and the timely analysis of the data to
answer security-relevant questions. In order to leverage data
provenance to enable secure and resilient systems, provenance
data must be collected and analyzed. Today, few systems
treat provenance as a first-class citizen. As a result, operators
and engineers must be able to integrate provenance into their
applications. This requires the appropriate technologies to
support easy integration of provenance into their applications.

As a result of our experience developing both academic and
operational provenance systems, we have developed both an
architecture and best practices for addressing the challenges
that surround provenance. In this paper we discuss these
challenges and survey the solutions to each of the phases
of the data provenance lifecycle from collection to its use in
resilient self-healing systems. We discuss methods to limit the
invasiveness and overhead of provenance on both developers
and the operation of the system.

In this paper, we make the following contributions:
• provide an overview and background on existing tools to

integrate provenance collection into resilient systems
• outline the challenges for securely leveraging data prove-

nance in decision making
• detail gaps in existing tools to support end-to-end secure

data provenance for resilient systems
Section III looks at provenance collection mechanisms that

exist today. Sections IV and V describe how provenance is
used, what tools exist for leveraging data provenance, and



2

what tools are still needed to fully utilize provenance. Finally,
Section VI concludes.

II. RELATED WORK

Data provenance provides a means of reasoning about
the flow of information through computer systems. However,
data provenance differs significantly from previous work in
the area. Below, we compare the goals and properties of
provenance-aware systems to past work on information flow.

Many projects have aimed to support Information Flow
Control (IFC) through instrumenting applications, operating
systems, and programming languages. FlowwolF is a web
browser that provides labeling support for distributed manda-
tory access control at the application layer [25]. Decentralized
IFC systems like Asbestos [14], HiStar [59], and Flume [30]
make use of a decentralized labeling scheme that allows
processes to compartmentalize data that is protected by the
operating system. This facilitates the use of a lattice-based
model for information flow [12]. DStar [58] extends this
approach to support distributed environments. In each case,
the primary thrust of these works is to provide system-layer
support to applications wishing to isolate user data, thus
reducing the consequences of a compromise. IFC systems thus
require a priori knowledge of desired flow properties, and are
unable to answer questions such as “How did data object
x come to have label a?” Provenance provides a means of
reasoning about flows and answering these questions.

Another area of information flow study is dynamic taint
analysis, in which the goal is to track the propagation of
select pieces of data across a system. Automated instrumenta-
tion for taint tracking has been developed for x86 binaries
[49] and smartphones [16], and dynamic taint analysis in
sandbox environments has also been used to secure off-the-
shelf applications [61]. Provenance can offer a more complete
explanation as to how an object became tainted. It is also
more flexible: taint tracking relies on an immutable policy that
requires that data be flagged at runtime, while a provenance-
based approach can flag data after execution and obtain a result
by “replaying” the provenance graph, enabling different taints
to be considered without requiring re-execution. Provenance
is thus a distinct form of reasoning about information flow.

III. PROVENANCE COLLECTION

A necessary prerequisite to the use of data provenance to
improve system resilience is its reliable capture and man-
agement, which is made possible through provenance-aware
systems and applications. There are a variety of ways in which
operators and engineers can deploy provenance-aware mecha-
nisms to facilitate this capture. Provenance-aware mechanisms
can also be divided into disclosed systems [17], [18], [36],
[38], [45] and automatic systems. Disclosed systems can take
the form of manual annotations or by processing documenta-
tion volunteered by the operator. In automatic systems prove-
nance metadata is procedurally generated in the software itself.
For the remainder of this work, we focus on automatic systems
for their ability to provide more comprehensive provenance
descriptions of system activity.

Automatic provenance-aware mechanisms can be deployed
at various layers of system operation, including operating

user space

kernel space

NF Hooks

Prov. Module

Relay
Buffer

Prov. Hooks

IMA

TPM

Prov.-Aware 
Applications &
Infrastructure

System Provenance Workflow Provenance

Integrity Measurements

Provenance
Recorder

Sec. Module

Fig. 1. Overview of Linux Provenance Modules (LPM) architecture. Kernel
hooks relay provenance to a recorder in user space for processing and storage.
Through use of the Integrity Measurement Architecture (IMA), the recorder
is also evaluates the integrity of workflow provenance prior to its storage.

systems, infrastructure (i.e., middleware), and applications.
Operating system sensors provide low-level detail on data
processing from the system perspective [7], [34], [41], [39],
[46]. System layer provenance also offers gapless descriptions
of user space activity, effectively making every application
that runs on the system provenance-aware. Unfortunately,
the semantic gap between kernel and user space can make
system provenance difficult to interpret, as exemplified by
the dependency explosion problem in which each new output
from a long running process appears to be dependent on all
prior inputs [31]. In contrast, deploying capture mechanisms
in infrastructure leads to provenance that is more semanti-
cally rich, while still offering broad coverage for a class of
applications that make use of that infrastructure [18], [17],
[50]. Due to the ubiquity of database backends in complex
application workflows, an important subclass of provenance-
aware infrastructure considers database management systems
[11], [21], [27], [39]. However, to obtain the most precise
and expressive provenance for an application workflow, it is
necessary to invest in a manual instrumentation effort of the
software. Doing so ensures a higher signal-to-noise ratio in
the captured provenance, as the developer’s understanding of
the workflow is encoded in the provenance itself. This effort is
made easier through the presence of special APIs and libraries
dedicated to provenance instrumentation [7], [20], [24], [35],
[37], [39].

In practice, designing resilient provenance-aware systems
does not require selecting a single provenance capture mech-
anism, but deploying a composition of the above mechanisms
in order to provide total transparency to mission critical
system activities. Below, we describe our past efforts in the
design and implementation of interoperable provenance-aware
components at different software layers.

A. Provenance-Aware Operating Systems

The Linux Provenance Modules (LPM) project is not
only a provenance-aware operating system, but a generalized
framework for the capture of data provenance that serves as



3

a trust anchor for other provenance-aware mechanisms [7].
LPM was designed specifically to provide reference monitor
guarantees [2] in the presence of an attacker that attempts
to subvert the provenance collection agent. For example, an
attacker may wish to manipulate provenance records in order
to commit fraud or inject uncertainty into data processing
results, as was the case in the “Climategate” controversy [47].

An overview of the LPM architecture is shown in Figure
1. LPM instruments the Linux kernel with a 178 dedicated
provenance collection hooks; these hooks are registered by
a provenance module, which also registers several Netfilter
hooks. As system events occur, the provenance module exam-
ines the event context and generates provenance records that
are shuttled out to user space for storage. To allow provenance
information to be securely transmitted between hosts, LPM
defines Netfilter functions that enforce a system-wide mes-
sage commitment protocol. The message commitment protocol
forces all messages transmitted between provenance-aware
hosts to be cryptographically verified using the Digital Sig-
nature Algorithm (DSA). We show in [7] how a machine can
securely boot into LPM through use of an Intel Trusted Boot
procedure, ensuring that LPM is able to collect provenance
prior to the start of mission-relevant system activities. We also
demonstrate the runtime integrity of LPM’s trusted computing
base through use of the SELinux MLS policy [26].

An especially important capability provided by the LPM
architecture is attested disclosure. As we discussed above,
resilient provenance-aware deployments require a composi-
tion of mechanisms and different system layers, but doing
so in a manner that preserves reference monitor guarantees
is an especially challenging problem. Applications in user
space, particularly network-facing services, are most at risk of
compromise; compromised applications may attempt to issue
false reports about their activities in order to inject uncertainty
into the provenance log. LPM addresses this by verifying the
integrity of applications with the Linux Integrity Measurement
Architecture (IMA) [48]. When an application wishes to report
provenance, it sends lineage metadata over a UNIX domain
socket to the Provenance Recorder. The Recorder recovers the
application’s process id over the UNIX socket, uses the /proc
filesystem to find the full path of the binary, and then uses this
information to look up the application in the IMA measure-
ment list. The disclosed provenance is recorded only if the
signature of application matches a known-good cryptographic
hash. This validation ensures that only known applications can
add provenance to the system record, preventing malware from
overflowing the log with extraneous provenance data. This
extra provenance information is recorded along with the LPM
provenance records, providing a more comprehensive look at
the processing of data. This layering is discussed in more detail
in Section III-E.

We performed a rigorous evaluation of the LPM system
in [7], and determined that the runtime overhead imposed by
provenance collection during heavy system load was just 2.7%
- 7.5% (I/O intensive activities experienced the higher of these
overheads). We also showed that LPM provenance could be
queried to determine the expansive ancestries of system objects
in just tens of milliseconds, enabling its real time use in the
complex deployments explored in Section IV. The limiting

Execution Partition

Database 
Capture Agent

Web Server

Proxy Server

SQL Parser

Prov. Extractor

Database 
Engine

UnmodifiedWeb Application

Unmodified

Provenance Recorder
Server Prov. Graph

Query APITrash Collect

1

2

3

4

5

6

7

Provenance Flow Data Flow

Kernel Space

Provenace-Aware Kernel

0

Fig. 2. Overview of Database-Aware Provenance (DAP) architecture.
Provenance-Aware components are shaded in orange. In this deployment,
DAP is able to capture provenance without requiring changes to the Database
Engine or Web Application; instead, provenance is generated by interposing
on the connection between the Web Application and Database Engine. A small
change to the Web Server is required to facilitate execution partitioning.

factor to LPM’s performance is high storage overhead, which
was on the order of gigabytes per hour under heavy load. We
are currently exploring new techniques to reduce provenance
storage overhead [6], as well as investigating how to adapt
existing techniques to LPM [10], [31], [32], [55], [56], [57].

Source code for the Linux Provenance Modules and sup-
porting utilities is available at http://linuxprovenance.org.

B. Provenance-Aware Infrastructure

The Database-Aware Provenance (DAP) [5] architecture
provides provenance capabilities to software infrastructure
through minimal-cost retrofits to existing application work-
flows. In designing DAP, we leveraged the observation that,
in many workflows, instrumentation efforts could be avoided
through introspection on the messages exchanged between
application components. Ubiquitous protocols such as HTTP
and SQL, as well as data marshaling languages like XML,
provide an open interface through which to infer the prove-
nance of the workflow. DAP is therefore comprised of a set
of communication proxies that parse application messages,
extract relevant semantics, and then record those semantics as
provenance. In [5], we consider a web service infrastructure
as an exemplar deployment scenario, shown in Figure 2. Red
lines mark a traditional web service data flow – incoming
HTTP/HTTPS requests are received by a web application,
prompting a series of database transactions that occur over a
local network socket, which are then used to craft a response
that is returned to the client.

DAP creates a modified, provenance-aware version of this
workflow as follows: (1) a remote client transmits a request
to the Web Application; (2) a small modification to the Web
Server notifies the Provenance Recorder that it has started a
new autonomous unit of work for fielding the request; (3)
the web application’s query to the database is proxied by a
Database Capture Agent, which parses the query and extracts
the relevant operational semantics; (4) after observing the
Database Engine’s response to the query, the Database Capture
Agent (5) creates a new provenance event and transmits it
to the Provenance Recorder; (6) after the Web Applications
returns response to the remote client, (7) the Web Server

http://linuxprovenance.org


4

signals the Provenance Recorder that the current unit of work
has ended. Because system events that occur outside of the
web service architecture may also inform its execution, (0)
DAP interoperates with LPM, which generates provenance for
all system activities that are not being explicitly reported by
the Web Server or Database Capture Agent.

In [5], we benchmarked end-to-end delay and determined
that DAP imposed just 5 ms overhead per web request.1

We performed microbenchmarking to determine that the pri-
mary source of this overhead was processing delays at the
Provenance Recorder, which could be addressed through the
introduction of redundant or multi-threaded components. We
also considered several scenarios in which DAP can be de-
ployed to quickly determine the root cause of system attack,
including SQL injection attempts, reverse shell invocations,
and a vulnerable system library exploit. Finally, through the
introduction of a security mechanism that authorizes individual
server responses in real time, we can discard older workflow
provenance for responses that have already been released to
a client. This reduces the growth of the DAP provenance log
from linear to logarithmic with respect to the number of web
requests.

We are not the first to explore the modification of appli-
cation infrastructure to capture provenance. Many database
and scientific workflow engines have been modified to capture
provenance without modifying the applications themselves.
Example systems include databases like Trio [54], scien-
tific workflow applications including VisTrails [9] and Tav-
erna [44], and purpose-built systems for research [23]. Hadoop
is another popular application that has been modified to collect
provenance without requiring Hadoop users to modify their
code [1].

C. Provenance-Aware Applications
In addition to OS and infrastructure collection, making

applications provenance-aware allows for contextually-rich
provenance information from applications. In order to achieve
the goal of provenance-aware applications, libraries are needed
for developers to emit provenance from their applications. One
such library is ProvToolbox [37], a library that presents an
implementation of the W3C PROV specification for Java ap-
plications. In addition to using these libraries for applications,
other tools that collect provenance, such as the ones described
above can leverage these libraries to emit provenance in a stan-
dard way. This ensures that provenance collected at multiple
levels within the system have a common representation.

D. Provenance Storage Considerations
With many of the systems described above, storage is

often an afterthought, especially for the OS-level provenance
collectors. Flat-files are used because they are easy to create
and manage, but present challenges when provenance analytics
need to access the data. Using a database is an option, but the
volume of data can quickly become problematic. The LPM
system explored the use of several different storage mech-
anisms, ultimately leveraging an in-memory graph database
built on the SNAP library [33].

117% of total latency with client and server in VMs on the same host

In order to address the volume of data generated by the
provenance system, others have looked at deduplication and
web encoding techniques [8]. This hybrid approach to prove-
nance storage shows promise in reducing the overall storage
overhead of provenance collection. Such approaches can help
alleviate, but not eliminate, potential denial of service attacks
where an attacker fills the provenance store with garbage data.

Another consideration for provenance storage is securing
the stored provenance against malicious modification and
deletion. As more systems are built to leverage provenance
as a resilience mechanism, protecting the data becomes vitally
important. Digital signatures and encryption are common tech-
niques that are currently being integrated into database sys-
tems [52], [28]. As cryptographic primitives become available,
provenance systems can leverage signatures and encryption to
protect the data. One problem that remains is detecting deleted
records. Even using hash chains, an adversary can truncate the
record. One possible solution is to leverage blockchains (e.g.
bitcoin [43]) that have periodic, public, commitments of data
to prevent truncation of provenance records.

E. Provenance Layering

While each of the above collection methods provides a view
of the data history, a more complete view is achieved by layer-
ing provenance collection. With application-level provenance,
developers are required to manually instrument their applica-
tions. Any missed operations results in missing provenance.
Using infrastructure and OS provenance to fill-in these gaps
ensures a complete provenance record. By layering sensors,
developers can also focus on those applications that are most
critical, and leave less critical applications to the other sensors.
This targeting of effort reduces the overall workload on the
developer.

Layering provenance sensors provides additional security
benefits as well. If an application is reporting provenance,
but becomes compromised, the other provenance sensors can
still reliably collect provenance on the actions taken by the
now malicious application that is reporting provenance. This
defense-in-depth approach to collecting provenance ensures a
complete record, even in the face of attack. As noted in [40],
layering also presents challenges that must be addressed.

IV. LEVERAGING PROVENANCE

The United States Department of Defense and the In-
telligence Community operate a wide variety of distributed
data processing applications. These applications are critical
to the success of the missions of these organizations and it
is therefore important that the applications are resilient to
security issues as well as the types of failures that occur in a
distributed system.

Provenance information can be used for a number of
purposes in such data processing systems. If a data item
enters the system and is later determined to be invalid, a taint
tracking service can use provenance information to locate all
data derived from that invalid data item. A security service
can use provenance data to identify suspicious activity such
as data access from unexpected users, unexpected locations,
or at unexpected volumes. An application monitoring service



5

can use real-time provenance information to identify service
failures, such as when a transformer is not creating new
data. Finally, a data validation service can use provenance
information to determine if data from unknown sources enters
the system.

Even though data processing applications are created for
different purposes, our experience indicates that many of them
have an architecture similar to the one shown in Figure 3.
This similarity currently makes it easier for us to manually
add provenance instrumentation, but in the future, we plan to
take advantage of these similarities and perform automated
instrumentation and analytics.

The common data processing architecture contains a set
of services that ingest data into the system from external
sources and then publish it as messages to a message bus
such as ActiveMQ [51] or RabbitMQ [53]. These messaging
systems support a publish/subscribe model where consumers
subscribe to receive information (for example, based on a
topic), publishers send messages to the messaging system,
and the messaging system delivers messages to the appropriate
subscribers.

One type of subscriber we often see is an archive, or
persister, service that receives messages that contain data to
be stored and writes that data to a database. The database may
be a vertically-scaled relational database such as Oracle [22]
or a horizontally-scaled database such as Accumulo [3]. The
archived data may come from ingesters or from transformers
(described next) that generate derived data.

Transform services subscribe to the bus and when they
receive data, they operate on it and publish derived information
back to the bus. In addition, if a transformer needs data from
the archive, it can use the message bus to request it from a
query service that retrieves data from the database and replies
over the message bus. Finally, users often interact with this sort
of system via a web interface that receives information from
application-specific web applications running in a framework
such as Apache Tomcat [4]. The web applications typically
interact with a query service that performs database queries
and may also interact with the message bus to control the
overall system. One example of a transform service is a
logistics planning application that receives requests to move
goods between two locations. The service aggregates these
requests into a set of requirements describing what must be
moved where and by when. It then performs an optimization
on to achieve the best possible schedule and cost while
preserving the requirements.

To verify the effectiveness of provenance in data processing
systems that follow the architecture above, we instrumented a
logistics planning application to emit provenance information.
This application ingests requirements that describe the items to
be transported, transforms those requirements and the state of
the transportation system into a movement plan, archives the
requirements and plan to a database, and presents information
to users via a web interface. We implemented real-time ana-
lytics on the provenance information to determine if logistics
data from unknown sources entered the system. We found
that provenance data can be used to accomplish this goal,
but the detection required knowledge of the application. We
wrote application-specific code that analyzed the provenance

Ingest Ingest Transform Transform

Query Web 
Interface

Archive Query

Application 
Framework

Web 
ApplicationDatabase

Message Bus

Fig. 3. A common architecture for data processing applications.

graph for each planning phase and determined if it matched
expectations. For example, the analysis code checked that the
requirements used in planning were the same requirements
generated by the web-based user interface for the logistics
application. The result of this analysis was presented in the
user interface by showing the provenance graph with a green or
red background and if red, an explanation why the provenance
graph was incorrect. Without data provenance, the system is
unable to detect deviations from the known-good workflow
(i.e. users submitting requests via the web interface) when
the adversary injects new data into the database. To detect
this without provenance would require auditing of database
and OS logs. A process typically done manually that takes
substantially longer than our automated provenance analytics.

We find that the overhead of generating and analyzing
provenance information in this logistics application is mini-
mal. Figure 4 shows that collecting provenance information
increases the execution time of the planning phase of the
logistics application by 4%. The planning phase consists of
generating and ingesting requirements, archiving and querying
requirements and plans, and generating a logistics plan. The
provenance data was published to the message bus in the
same threads that execute application tasks. The execution time
overhead could therefore be lowered using techniques such
as using a separate thread to publish provenance information.
Figure 5 shows that storing provenance information in a
relational database increases the amount of storage needed
by approximately 1% when compared to the amount of ap-
plication data generated for a planning phase (for example,
requirements and log files). Furthermore, the storage overhead
is much less than 1% when compared to the application data
used during a planning phase (the definition of the state of the
available transportation system).

In future work, we will develop automated methods to
detect anomolies in provenance graphs so that we do not
have to implement application-specific detection. We expect
that these methods will combine general heuristics as well as
automated comparison to past provenance graphs that have
been labeled as valid or invalid. Furthermore, since many data
processing systems have architectures similar to Figure 3, we
will investigate whether adding provenance instrumentation to
common services such as message buses, databases, and web
application frameworks will allow us to reduce the amount of
instrumentation that needs to be added into application code.



6

 0

 10

 20

 30

 40

 50

 60

 70

 80

'Collect' 'Store' 'Plan'

T
im
e 
(s
ec
on
ds
)

Operation

Time
Provenance

Fig. 4. Execution time overhead of collecting provenance information.

 0

 500

Data

 10000

 10500

S
to
ra
ge

 
(K
B
)

Data
Provenance

Fig. 5. Overhead of storing provenance information.

V. TOOLS FOR PROVENANCE

As stated in the prior sections, provenance provides many
benefits to the software and production engineers. However,
the process of creating and maintaining infrastructure to cap-
ture and process data provenance is a complicated task.

To lower the bar of entry for engineers interested in utilizing
provenance, we have created a collection of tools that can
help build a provenance pipeline: from capturing system level
provenance, to instrumenting applications, to interpreting and
moving provenance around a network.

Additionally, We are beginning to work on other compo-
nents of this pipeline, by improving tools used in collecting
and shipping provenance data at scale.

A. Today’s Tooling

Today’s tooling focuses on two types of provenance collec-
tion, and a method for distribution of provenance data.

Engineers interested in data provenance today can start
by collecting and analyzing system-level provenance data
using the Linux Provenance Modules (LPM). LPM pro-
vides users with detailed and verbose logs regarding what
every process and user on the system are doing and
what invoked those actions. LPM is freely available from
http://linuxprovenance.org/.

Engineers will quickly realize that there is a large semantic
gap between what LPM collects and reports and what their
application is actually doing. To illustrate this point, imagine
a database application. This application writes to a binary
data structure stored on disk. Within the context of LPM, this
process is reading and writing to those files on disk – however,
the operator trying to make sense of this data would be unable
to make sense of it. What tables were being updated? What
actions triggered the update?

To address this semantic gap, we’ve created the Userspace
Provenance Library, and are in the process of making it open

source. This library allows engineers to annotate their code and
provide contextual information to system provenance (and vice
versa). The application initiating a database write can indicate
to the library basic information such as who initiated the action
or where the data was derived from, giving a clearer picture
as to what the process was doing.

Finally, we realize that few computer systems act on their
own. Analyzing large amounts of provenance data requires
systems with more processing power than the machines who
are sending it. Curator (another tool going through the open
source process) is our answer from taking provenance from
multiple sources on a system (e.g. LPM, Userspace Prove-
nance Library, etc.), then shipping it off to a variety places
where it can be stored, such as Accumulo, Neo4j, or other
delimited file formats.

B. Future Tooling

While many tools currently exist for collecting, storing,
and analyzing provenance, there is still work to be done.
First, many collection mechanisms require a software agent on
the system to store provenance on a remote server. Existing
prototype agents (SPADE and Curator) are large and require
heavyweight infrastructure, such as the JVM [20]. While this
may work for certain environments, other environments cannot
support a full JVM, and smaller, self-contained agents are
required. These agents should be compatible with existing
infrastructure, and integrate cleanly into the many different
systems that we anticipate will benefit from provenance.

Another limitation of leveraging provenance at the appli-
cation layer is the lack of provenance-aware applications. In
order to make applications provenance-aware, developers must
manually instrument the applications to emit provenance infor-
mation. For certain high-value applications this is reasonable,
but for many legacy applications, there is little incentive to pro-
vide the appropriate instrumentation. Instead, automated hook
placement techniques can be used to instrument applications.
This is work that we are just beginning to explore, leveraging
existing work in automated authorization hook placement [19],
[29], [42].

VI. CONCLUSION

Bigger and better walls around our systems will not prevent
adversaries from gaining access to our systems, and wreaking
havoc. Instead, building in protections that will allow systems
to gracefully recover from attack are needed. Data provenance
is one such protection that is reaching a point where developers
and engineers can leverage existing tools to collect, store,
and analyze provenance data. This data allows engineers to
answer difficult questions about data being processed, and
protect that data, even in the face of adversaries that have
breached the perimeter defenses. While many of the tools and
libraries are mature, there is still work left to fully realize the
potential of data provenance in systems. This work looked
at the overall landscape and presented the reader with an
overview of the tools that exist today, and what tools are
actively being developed. What is still needed is a community-
driven effort to build and maintain these tools over time, and
enhance the capabilities of data provenance.



7

ACKNOWLEDGEMENTS

We would like the thank the anonymous reviewers for the
valuable feedback, and the members of the Secure Resilient
Systems and Technology group. This work was supported
in part by the US National Science Foundation under grant
numbers CNS-1540216 and CNS-1540217.

REFERENCES

[1] S. Akoush, R. Sohan, and A. Hopper. Hadoopprov: Towards provenance
as a first class citizen in mapreduce. In Proceedings of the 5th USENIX
Workshop on the Theory and Practice of Provenance, TaPP ’13, pages
11:1–11:4, Berkeley, CA, USA, 2013. USENIX Association.

[2] J. P. Anderson. Computer security technology planning study. Tech-
nical Report ESD-TR-73-51, Air Force Electronic Systems Division,
Hanscom AFB, Bedford, MA, Oct. 1972.

[3] Apache Accumulo. http://accumulo.apache.org.
[4] Apache Tomcat. http://tomcat.apache.org.
[5] A. Bates, K. Butler, A. Dobra, B. Reaves, P. Cable, T. Moyer, and

N. Schear. Retrofitting Applications with Provenance-Based Security
Monitoring. https://arxiv.org/abs/1609.00266, September 2016.

[6] A. Bates, K. R. B. Butler, and T. Moyer. Take Only What You Need:
Leveraging Mandatory Access Control Policy to Reduce Provenance
Storage Costs. In Proceedings of the 7th International Workshop on
Theory and Practice of Provenance, TaPP’15, July 2015.

[7] A. Bates, D. Tian, K. R. Butler, and T. Moyer. Trustworthy Whole-
System Provenance for the Linux Kernel. In Proceedings of 24th
USENIX Security Symposium on USENIX Security Symposium, Aug.
2015.

[8] M. A. Borkin, C. S. Yeh, M. Boyd, P. Macko, K. Z. Gajos, M. Seltzer,
and H. Pfister. Evaluation of filesystem provenance visualization
tools. IEEE Transactions on Visualization and Computer Graphics
(Proceedings of InfoVis 2013), 2013.

[9] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva,
and H. T. Vo. Vistrails: Visualization meets data management. In
Proceedings of the 2006 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’06, pages 745–747, New York, NY,
USA, 2006. ACM.

[10] A. Chapman, H. Jagadish, and P. Ramanan. Efficient Provenance
Storage. In Proceedings of the 2008 ACM Special Interest Group on
Management of Data Conference, SIGMOD’08, June 2008.

[11] L. Chiticariu, W.-C. Tan, and G. Vijayvargiya. DBNotes: A Post-it
System for Relational Databases Based on Provenance. In Proceedings
of the 2005 ACM Special Interest Group on Management of Data
Conference, SIGMOD’05, June 2005.

[12] D. E. Denning. A Lattice Model of Secure Information Flow. Commun.
ACM, 19(5):236–243, May 1976.

[13] E. Dezenhall. A look back at the target breach. http:
//www.huffingtonpost.com/eric-dezenhall/a-look-back-at-the-target b
7000816.html, april 2015.

[14] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazières, F. Kaashoek, and R. Morris. Labels and Event
Processes in the Asbestos Operating System. SIGOPS Oper. Syst. Rev.,
39(5):17–30, Oct. 2005.

[15] P. Elkind. Sony pictures: Inside the hack of the century. http://fortune.
com/sony-hack-part-1/, July 2015.

[16] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth. TaintDroid: An Information-flow Tracking System for
Realtime Privacy Monitoring on Smartphones. In Proceedings of the 9th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI’10, Oct. 2010.

[17] I. T. Foster, J.-S. Vöckler, M. Wilde, and Y. Zhao. Chimera: AVirtual
Data System for Representing, Querying, and Automating Data Deriva-
tion. In Proceedings of the 14th Conference on Scientific and Statistical
Database Management, SSDBM’02, July 2002.

[18] J. Frew and R. Bose. Earth System Science Workbench: A Data Man-
agement Infrastructure for Earth Science Products. In Proceedings of
the 13th International Conference on Scientific and Statistical Database
Management, pages 180–189. IEEE Computer Society, 2001.

[19] V. Ganapathy, T. Jaeger, and S. Jha. Retrofitting legacy code for
authorization policy enforcement. In Proceedings of the 2006 IEEE
Symposium on Security and Privacy, pages 214–229, May 2006.

[20] A. Gehani and D. Tariq. SPADE: Support for Provenance Auditing
in Distributed Environments. In Proceedings of the 13th International
Middleware Conference, Middleware ’12, Dec 2012.

[21] B. Glavic and G. Alonso. Perm: Processing Provenance and Data on
the Same Data Model Through Query Rewriting. In Proceedings of the
25th IEEE International Conference on Data Engineering, ICDE ’09,
Mar. 2009.

[22] R. Greenwald, R. Stackowiak, and J. Stern. Oracle essentials: Oracle
database 12c. O’Reilly Media, Inc., 2013.

[23] P. J. Guo and M. Seltzer. Burrito: Wrapping your lab notebook in
computational infrastructure. In Proceedings of the USENIX Workshop
on the Theory and Practice of Provenance (TaPP), June 2012.

[24] R. Hasan, R. Sion, and M. Winslett. The Case of the Fake Picasso:
Preventing History Forgery with Secure Provenance. In Proceedings of
the 7th USENIX Conference on File and Storage Technologies, FAST’09,
San Francisco, CA, USA, Feb. 2009.

[25] B. Hicks, S. Rueda, D. King, T. Moyer, J. Schiffman, Y. Sreenivasan,
P. McDaniel, and T. Jaeger. An Architecture for Enforcing End-to-end
Access Control over Web Applications. In Proceedings of the 15th ACM
Symposium on Access Control Models and Technologies, SACMAT ’10,
pages 163–172, New York, NY, USA, 2010. ACM.

[26] B. Hicks, S. Rueda, L. St.Clair, T. Jaeger, and P. McDaniel. A Logical
Specification and Analysis for SELinux MLS Policy. ACM Trans. Inf.
Syst. Secur., 13(3):26:1–26:31, July 2010.

[27] D. A. Holland, U. Bruan, D. Maclean, K.-K. Muniswamy-Reddy, and
M. I. Seltzer. Choosing a Data Model and Query Language for Prove-
nance. In Second International Provenance and Annotation Workshop,
IPAW’08, June 2008.

[28] J. Kepner, V. Gadepally, P. Michaleas, N. Schear, M. Varia, A. Yerukhi-
movich, and R. K. Cunningham. Computing on masked data: a
high performance method for improving big data veracity. CoRR,
abs/1406.5751, 2014.

[29] D. H. King, S. Jha, D. Muthukumaran, T. Jaeger, S. Jha, and S. Seshia.
Automating security mediation placement. In Proceedings of the 19th
European Symposium on Programming (ESOP ’10), pages 327–344,
2010.

[30] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris. Information Flow Control for Standard OS Abstractions.
In Proceedings of Twenty-first ACM SIGOPS Symposium on Operating
Systems Principles, SOSP ’07, pages 321–334, New York, NY, USA,
2007. ACM.

[31] K. H. Lee, X. Zhang, and D. Xu. High Accuracy Attack Provenance
via Binary-based Execution Partition. In Proceedings of the 20th ISOC
Network and Distributed System Security Symposium, NDSS, Feb. 2013.

[32] K. H. Lee, X. Zhang, and D. Xu. LogGC: Garbage Collecting Audit
Log. In Proceedings of the 2013 ACM Conference on Computer and
Communications Security, CCS, Nov. 2013.

[33] J. Leskovec and R. Sosič. Snap: A general-purpose network analysis
and graph-mining library. ACM Transactions on Intelligent Systems and
Technology (TIST), 8(1):1, 2016.

[34] S. Ma, X. Zhang, and D. Xu. ProTracer: Towards Practical Provenance
Tracing by Alternating Between Logging and Tainting. In Proceedings
of the 23rd ISOC Network and Distributed System Security Symposium,
NDSS, 2016.

[35] P. Macko and M. Seltzer. A General-purpose Provenance Library. In
4th Workshop on the Theory and Practice of Provenance, TaPP’12, June
2012.

[36] L. Moreau, P. Groth, S. Miles, J. Vazquez-Salceda, J. Ibbotson, S. Jiang,
S. Munroe, O. Rana, A. Schreiber, V. Tan, and L. Varga. The provenance
of electronic data. Commun. ACM, 51(4):52–58, 2008.

[37] L. Moreau, T. D. Huynh, M. Jewell, A. S. Keshavarz, J. A. Hussein,
and D. Michaelides. ProvToolbox, 2014.

[38] P. Mouallem, R. Barreto, S. Klasky, N. Podhorszki, and M. Vouk.
Tracking Files in the Kepler Provenance Framework. In SSDBM 2009:
Proceedings of the 21st International Conference on Scientific and
Statistical Database Management, June 2009.

[39] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko,
D. Maclean, D. Margo, M. Seltzer, and R. Smogor. Layering in
Provenance Systems. In Proceedings of the 2009 Conference on USENIX
Annual Technical Conference, ATC’09, June 2009.

[40] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko,
D. Maclean, D. Margo, M. Seltzer, and R. Smogor. Layering in
provenance systems. In Proceedings of the 2009 Conference on USENIX
Annual Technical Conference, USENIX’09, pages 10–10, Berkeley, CA,
USA, 2009. USENIX Association.

[41] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer.
Provenance-aware Storage Systems. In Proceedings of the Annual
Conference on USENIX ’06 Annual Technical Conference, Proceedings
of the 2006 Conference on USENIX Annual Technical Conference, June
2006.

http://accumulo.apache.org
http://tomcat.apache.org
https://arxiv.org/abs/1609.00266
http://www.huffingtonpost.com/eric-dezenhall/a-look-back-at-the-target_b_7000816.html
http://www.huffingtonpost.com/eric-dezenhall/a-look-back-at-the-target_b_7000816.html
http://www.huffingtonpost.com/eric-dezenhall/a-look-back-at-the-target_b_7000816.html
http://fortune.com/sony-hack-part-1/
http://fortune.com/sony-hack-part-1/


8

[42] D. Muthukumaran, S. Rueda, H. Vijayakumar, and T. Jaeger. Cut me
some security! In Proceedings of the 3rd ACM Workshop on Assurable
and Usable Security Configuration, SafeConfig ’10, pages 75–78, 2010.

[43] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Techni-
cal report, bitcoin.org, 2008.

[44] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris, K. Glover,
C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. R. Pocock,
M. Senger, R. Stevens, A. Wipat, and C. Wroe. Taverna: Lessons in
creating a workflow environment for the life sciences: Research articles.
Concurr. Comput. : Pract. Exper., 18(10):1067–1100, Aug. 2006.

[45] C. Pancerella, J. Hewson, W. Koegler, D. Leahy, M. Lee, L. Rahn,
C. Yang, J. D. Myers, B. Didier, R. McCoy, K. Schuchardt, E. Stephan,
T. Windus, K. Amin, S. Bittner, C. Lansing, M. Minkoff, S. Nijsure,
G. von Laszewski, R. Pinzon, B. Ruscic, A. Wagner, B. Wang, W. Pitz,
Y.-L. Ho, D. Montoya, L. Xu, T. C. Allison, W. H. Green, Jr., and
M. Frenklach. Metadata in the Collaboratory for Multi-Scale Chemical
Science. In Proceedings of the 2003 international conference on
Dublin Core and metadata applications: supporting communities of
discourse and practice—metadata research & applications, pages 13:1–
13:9. Dublin Core Metadata Initiative, 2003.

[46] D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler. Hi-Fi:
Collecting High-Fidelity Whole-System Provenance. In Proceedings of
the 2012 Annual Computer Security Applications Conference, ACSAC
’12, Orlando, FL, USA, 2012.

[47] A. C. Revkin. Hacked E-mail is New Fodder for Climate Dispute. New
York Times, 20, 2009.

[48] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
Implementation of a TCG-based Integrity Measurement Architecture.
In Proceedings of the 13th USENIX Security Symposium, San Diego,
CA, USA, Aug. 2004.

[49] P. Saxena, R. Sekar, and V. Puranik. Efficient Fine-grained Binary In-
strumentationwith Applications to Taint-tracking. In Proceedings of the
6th Annual IEEE/ACM International Symposium on Code Generation
and Optimization, CGO ’08, pages 74–83, New York, NY, USA, 2008.
ACM.

[50] C. T. Silva, E. W. Anderson, E. Santos, and J. Freire. Using VisTrails
and Provenance for Teaching Scientific Visualization. Comput. Graph.

Forum (), 30(1):75–84, 2011.
[51] B. Snyder, D. Bosnanac, and R. Davies. ActiveMQ in action, volume 47.

Manning, 2011.
[52] C. Sparks, R. K. Cunningham, A. Hamlin, E. Shen, M. Varia,

D. A. Wilson, and A. Yerukhimovich. Verifiable Responses
to Accumulo Queries. http://accumulosummit.com/program/talks/
verifiable-responses-to-accumulo-queries/, April 2015.

[53] A. Videla and J. J. Williams. RabbitMQ in action. Manning, 2012.
[54] J. Widom. Trio: A system for integrated management of data, accuracy,

and lineage. Technical Report 2004-40, Stanford InfoLab, Aug. 2004.
[55] Y. Xie, D. Feng, Z. Tan, L. Chen, K.-K. Muniswamy-Reddy, Y. Li, and

D. D. Long. A Hybrid Approach for Efficient Provenance Storage. In
Proceedings of the 21st ACM International Conference on Information
and Knowledge Management, CIKM ’12, 2012.

[56] Y. Xie, K.-K. Muniswamy-Reddy, D. Feng, Y. Li, and D. D. E. Long.
Evaluation of a Hybrid Approach for Efficient Provenance Storage.
Trans. Storage, 9(4):14:1–14:29, Nov. 2013.

[57] Y. Xie, K.-K. Muniswamy-Reddy, D. D. E. Long, A. Amer, D. Feng,
and Z. Tan. Compressing Provenance Graphs. In 3rd Workshop on the
Theory and Practice of Provenance, TAPP’11, June 2011.

[58] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières. Securing Distributed
Systems with Information Flow Control. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI’08, pages 293–308, Berkeley, CA, USA, 2008. USENIX
Association.

[59] N. B. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making
Information Flow Explicit in HiStar. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation, OSDI’06,
Nov. 2006.

[60] J. Zhao, C. Wroe, C. Goble, R. Stevens, D. Quan, and M. Greenwood.
Using Semantic Web Technologies for Representing E-science Prove-
nance, pages 92–106. Springer Berlin Heidelberg, Berlin, Heidelberg,
2004.

[61] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall. TaintEraser:
Protecting Sensitive Data Leaks Using Application-level Taint Tracking.

SIGOPS Oper. Syst. Rev., 45(1):142–154, Feb. 2011.

http://accumulosummit.com/program/talks/verifiable-responses-to-accumulo-queries/
http://accumulosummit.com/program/talks/verifiable-responses-to-accumulo-queries/

	Introduction
	Related Work
	Provenance Collection
	Provenance-Aware Operating Systems
	Provenance-Aware Infrastructure
	Provenance-Aware Applications
	Provenance Storage Considerations
	Provenance Layering

	Leveraging Provenance
	Tools for Provenance
	Today's Tooling
	Future Tooling

	Conclusion
	References

